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Fundamental to this work has been the development of a
continuum formul.tion that can accurately account for the effects
of interlaminar shear and interlaminar normal stress variation
through-the-thickness of a laminate. Furthermore, emphacis has
been particularly on tapered-twisted airfoil geometries which can
be analytically represented as an assemblage of thin to moderately
thick finite elements. To achieve solution efficiencies, various
plate/shell type elements have been developed in this work as

opposed to the more computationally intensive solid type elements.

on the basis of these requirements, alternative continuum
formulations have been considered and are herein denoted as the
(i) Higher oOrder Displacement, (ii) Modified-Kirchhoff and (iii)
Hybrid Stress formulations, respectively. "Shear deformable"
elements, based on the former two formulations, have been
incorporated in a computer code and tested on the basis of
correlations with known analytical, numerical, and experimental
solutions. Numerous tests have been performed for static, dynamic
and buckling behavior of laminated structures. Both plate and
"doubly-curved" shell elements have been formulated and
successfully tested. Note that wuse of a shell element is an

especially efficient approach in modelling airfoil geometries.

Significant efforts have also been devoted to developing a
suitable large displacement formulation. Due to the requirement
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that interlaminar stresses be accurately represented, a total

?éf Lagrangian formulation has been utilized and based upon the ?~%q
r complete Green's strain tensor. A geometric and L
E large-displacement stiffness formulation, based upon a form of the :
E noniinear strain-nodal displacement relationship, has been :j
d developed and numerically implemented for one of the developed ;f;i
g "ghear deformable” plate elements. ;;ug
E Since emphasis in this work focused on the development of =

: incremental response solutions, including damage effects, the
i computational approach needed to have the capability ¢to (i) f_k
predict and differentiate between relevant failure modes, (ii)

- modify constitutive equations appropriately and (iii) perform

! equilibrium iterations to assure stress redistribution based upon
B
the extent of damage. Use of "piecewise smooth" failure criteria

based on various types of damage has provided a good basis for

Vo

incrementally tracking damage. This approach has been

| B

LA B
v

incorporated in the computer code using varicus stress criteria.

Alternative strain-based and energy-based approaches have been

N

considered including the representation of damage via the use of

Lo

internal state variables.

N
3

L

Note that integration for an element is performed on a :;ri

layer-by-layer basis which allows for damage effects to be --?

characterized at the layer level. Herein a layer refers to either T%

a lamina or to a subset of adjacent laminae having equal ply _;!
orientations. It 1is noteworthy that variation in strain energy

2 |

.
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can be calculated as damage accumulates and that such information
can provide the basis for evaluating sub-laminate buckling and ‘,!j
. even delamination growth. _ } lﬂ

Experimental data has been utilized to gubstantiate both

RPLIST YT T

stiffness reduction and damage predictions. The data is in the

form of failure strengths for laminates and material moduli

variations.

ol

L ae

Computational efficiencies have been achieved in the

T

numerical procedures primarily by using an equilibrium formulation
E to obtein the transverse stresses. This approach minimizes the

need for 3-D svulid elements. Furthermore, a "reduced basis"
! approach for computing nonlinear dynamic response has been

developed and partially implemented in the computer code.

In summary, the utility of the developed "shear deformable"

PETREEN

elements, and in particular the use of an equilibrium formulation
f tc obtain the transverse stresses, has been demonstrated for

laminated composite geometries. Realistic structures can be

5 modelled with the use of a mesh generator, which has been
g developed in order to generate airfoil geometries. Since
' solutions for airfoil response were not available with which to ;;;i
r validate the computer formulation, laminated composite cylinders, .
with various boundary conditions, were modelled to demonstrate the f'fﬁ
h capability of the formulation to determine transverse stresses in ;_!

"curved" geometries. These stresses are essential in tie
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determination of damage accumulation becauce of the typically low

interlaminar strength exhibited by laminated composite materials.

Excellent damage predictions have been obtained by cougpling
the formulation with piecewise continuous stress criteria which
provide the basis for differentiating between damage modes. These
modes include tfiber fracture, and teansile-compressive matrix
cracking, including arrays of both intralaminar and interlaminar
cracks. Strain ena2rgy calculations have been performed to
determine the variation in strain enargy release rate along the
boundary of an interior debonded region. These calculations are
based on the assumplion of a relatively thin sublaminat. bounded

by a rigid "parent”.

The numerical formulation developed in this work is
especially suited to analyzing the nonlinear effects and damage
progression in a;tual structures., e.g., the response of an
airfoil to foreign object damage or the response of a helically
wound cylinder to a tool drop. It is noted that "scaled down"
analyses have been performed for primarily tvo reasons: (1) the
lack of data with which te correlat.: the results and (2) the
solutions to date have been obtained on a mini-tomputer, while
timely solutions for the examples cited would have to be obtained
on a mainframe. With regard to the second point, it would be
worthwhile to either "vectorize" the computer formulation or to

convert the code to a parallel processing format.
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The sublaminate analysis could be made more realistic by
considering boundary conditions that reflect the actual
displacement/slope conditions at the delamination ftontt This
approach is achievable through more computational effort, focused
on accounting for the generalized forces/displacement that occur
along the boundary of the debonded region. These boundary
conditions could be supplied by the complete (global) finite

element modal to a local model of the delaminated region.

Finally, there are strain-based and energy-based damage
criteria that have the potential for providing more accurste
damage predictions than those obtained herein using stress
criteria. Implementing such criteria in the numerical model,
however, would require significant experimental effort to
determine certain phenomonological constants needed to relate

constitutive behavior to damage progression.
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IX. SUNNARY RY TASK
This section presents technical highlights of the research
efforts to date for each of the three tasks. Detaill_of the

analytical formulation are presented in the Appendices.

1I.1. TASK I: Nonlinear Displacement Pormulation for Composite
Nedia

IT.1.1 Continuum PFormulation

Two variational principles, the principle of minimum
potential energy and the principle of modified complementary
energy, are generally used to develop two distinctly different
finite element models, the assumed displacement model and the
hybrid stress model respectively. These models incorporate the
effects of transverse shear and normal deformations whose
contributions are recognized as essential for accurate laminate
analysis [1-10]). 1In the present work, emphasis has been placed on

developing displacement based models.

Within the displacement formulation, element stiffness
matrices are determined for each element, these matrices are then
assamnbled to represent the final system of equations and a
solution procedure for the unknown nodal displacements is
provided. Coordinate transformations to describe ply orientations
of a composite media are taken into account. The in-plane
stresses are calculated from constitutive relations of orthotropic

6
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continuum wheress transverse shear and normal stresses are
calculated from equilibriua considerations. Finite element models
have been tested for static, dynamic and buckling behavior. The
test problems and the results are presented in Section II.1l.4.

The finite element models are herein briefly discuased.
A. Higher Order Displacement Poraulation

The through-the~thickness effects can be incorporated into
the analysis by choosing a displacement field that eliminates two
major shortcomings of the classical plate theory; namely normals
remain normal and in-plane displacements are linear through the
thickness. These shortcomings are eliminated by prescribing
independently the reference surface displacements and rotations of
the normal and including higher order terms for in-plane
displacements. This is accomplished in the plate element

formulation by the following variation

u(x,y,z) = u (x,y) + zv, (x,y) + zzox(x,y)
v(x,y,s) = vo(x.y) + zwy(x,y) + zzoy(x.y)

wix,y,z) = wo(x,y)

The neutral surface displacements are represented by U,V and w

o'
the rotation about the y-axis is denoted by Yy and the rotation
about the x-axis is wy. The coefficients of zz, i.e., ’x and ’y'

are contributions from transverse deformations (5,6) and have been
found to be significant for unsymmetric laminate geometries.

7
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These terms can be omitted in the analysis of symmetric laminates

by imposing the appropriate constraints.

In the shell foramaulation, the displacement field is more
complex in that it includes components of the surface unit-normal
vector and three rotational coaponents. The displacement

components become

u(x,y,s) = ug(x,y) + z[Nw (x,y) - N¥, (x,¥)]
viX,y.8) = voix,y) + s(N v (x,y) + Nov (x,y)]
wix,y,2) = wo(x,y) - 2{Nov, (x,¥) + No¥, (x,¥)]

where N N and N, are components of the surface normal at a

x' Y
particular (x,y,z) coordinate location for the element. The shell

displacements degenerate to those of a plate for N, = 1 and N =

N, = 0 as expected. Note that 22

Y
displacement field for the shell element.

terms are not included in the

The elements developed are designated as the quadrilateral
higher order displacement (QHD) models. QHD40 is an eight-noded
plate element with seven degrees of freedom (three midsurface
displacements, two rotations and two higher order terms for
in-plane displacements) per corner node and three degrees of
freedom (transverse midsurface displacement and two rotations) per
mid-state node. QHD48 and QHD48S are eight-noded plate and shell
elements respectively, with six degrees of freedom (three
midsurface displacements and three rotations) per node. Element
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QED28 is a simplified wversion of QHD4O, for which the mid-side ) ;5
@F‘ nodes are eliminated. It should be noted that when the two higher %j:i
order terms for in-plane displacements at each corner node are  :-L
cmitted, QHD28 reduces to the widely used four-noded bilinear , ;;
] plate element (QHD20). These elements produce either a quadratic ;::j
or cubic variatiorn in the transverse shear stress. L
’ B. #odified-Kirchhoff Formulation “j

The Kirchhoff-Love asgsumption for normals to the reference

surface is relaxed by incorporating shear rotations as additional

degrees of freedom in the formulation [i0]. Thus the assumed

displacement field allows the transverse shear deformations but

neglects the transverse normal deformations. The rotations Yy and

: L:

are incorporatcd in the displacement variation for the plate as

\ Ty {
E follows . Cj
| N
: wix,y) = w (x,y) - ffTﬂ
| u(x,y,z) = u_(x,y) - z{—- + v ] n
t X o ’ ax X 1
! |
’ . |
ow T -
' vix,y,2z) = v (x,y) - 2{—- + vy] ""%
r'- y S
) The transverse dicplacement w(x,y) is chosen such that it will i
: produce stress fields that characterize the transverse effects ﬂ"ir
i accurately. l_ ;
| _s
, This approach has been implemented in the formulation of an
Y
t.' 9 1
! 9
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eight-node quadrilateral plate element with 32 degrees of freedom-
QD32, and various triangular elements. The stress fields obtained
for these elements represent a quadratic transverse shéar‘stress
variztion, The quadrilateral element produced the best results

using this formulation.
IX1.1.2 Large Displaceaent Foraulation

Inclusion of geometrically nonlinear effects in the
formulation must be based upon the geometry to be analyzed and
upon the type of stress prediction capabilities desired. The
classical approach to thin plate analysis has been to use the
Kirchhoff-Love assumptions in conjunction with the nonlinear von
Karman relations f11,12]). As previously indicated, the
Kirchhoff-Love assumptions are relaxed in this work to allow for a
more accurate definition of interlaminar stress variation. These
stresses can vary substantially through-the-thickness for the
geometries of interest, i.e., thin to moderately thick plate type
structures. The complete Green'’s strain tensor is utilized in
this work, therefore, to account for all significant contributions
to the interlaminar stress field. With respect to fixed Cartesian

coordinates, x, y, and z, the strain tensor has the form

au 1 [(au)? avy 2 aw) 2
€, = — + = —_— + — + _
ax 2 ox 9x ax
Ju v su 3du ov av aw 3w
ny - e o b |—— p — — ¢ — -
oy 9x ax dy éx 3y 9x dy

10
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vhere u, v and w represent displacements in the x,y,z coordinate
directions, respectively. Note that the other strain components
are obtained by a suitable permutation. 1In small-displqcement
analysis, the quadratic terms are neglected to give simply the

linear strain approximation.

Based on the Green’s strain tensor, the strain to nodal point
displacement relationship can be speéified for elements under

development. It takes the form

{e} = [B]{8)

Where (e} 1is the vector of strain components, {4} the vector of
nodal point displacements and [B] a function of derivatives of the
element shape functions. The quadratic terms in the strain tensor
result in (B} being a function of displacement state and,
therefore, an incremental equilibrium formulation is required.
The incremental strain-nodal displacement relationship takes the

form

(8e} = (IB,] + [B,1) {88}

vhere {8£) and {84) represent incremental strains and nodal
displacements, respectively, [Bol and [BL] are the small and large
displacement contributions to the incremental strains. Based on
the incremental equilibrium equations, the displacement
formulation gives the force-displacement relationships

11
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b (K,) = I [B,1" [D]IB,) av .-

| v

(x,] = i [IBOIT (D18, ] + (B 1T[DI[B,] +[B 1TILI(B,) ]dv

where (D] is an elasticity matrix obtained simply from the -
5 constitutive equations and integration is over the volume V of the :::i
elenment. (Ko] is denoted the small-displacement stiffness matrix

and [KL] is denoted the large-displacement stiffness matrix.

Since response is also a function of stress state, the geometrical i”ﬁi

stiffness matrix [KG] is required and is obtained from

ad

[Kg1 {38} = i 818, 1 (o}av

i where {¢} is the vector of stress components.

; Inertial effects are analytically treated as a mass matrix
5 [M] which is a function of density and the element shape
T functions. These matrix forms are required in formulating

5 static/dynamic response solutions and the incremental equilibrium

equations have the general form

i (M) {8su} + ([K ] + [K; ] + [K;]) {8u} = {&F}

i whete the mass and stiffness matrices represent an assembly of the [ |
? elemental matrices previously discussed, {8u} and {8u} represent e

12
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the incremental displacements and accelerations for the
mathematical model and {8F} represents the vector of incrementally

applied forces.

A complete Jgeometrically nonlinear formulation, for static
and dynamic response calculations, has been implemented in the
computer code only for the QHD48 element. Linear elastic buckling
analysis has been performed, however, with each of the elements,

i.e., with [KL] cmitted from the equation above.
I1.1.3 Computer Implementation

Computer coding has been developed for the purpose of
implementing the various continuum formulations. The code has
served to generate static, dynamic and buckling solutions using
different element formulations. All of the element integration is
performed on a layer-by-layer basis through-the-thickness of the
laminate. This approach is fundamental to the inclusion of damage

mechanisms in the formulation.

Since solution of the equilibrium equations is a vital
component in the overall solution strategy, it is appropriate to
discuss the numerical methodology used in solving these eguations.
The intent is to obtain a higher ordered variation of the

transverse shear and normal stresses (o o..., and °zz) than can

xz' "yz
be obtained wvia the constitutive equations. The solution
procedure can be thought of as descr’bed below. Assume that the

13
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in-plane stresses (o o...) within each layer of a

yy' xy
particular element have been determined at selected locations,

xx' 7
i.e., through solution of the constitutive equations. In the code
as presently written, these locations are specified as the element
centroid and element nodal points. The equilibrium equations (in

the absence of body forces) have the indicial form

‘ij,j = 0

from which if follows that the through-the-thickness shear stress
variation can be written in numerical form for the ith layer as
bo

xz; = -({o +

xX,X °xy,y)i Azi

and

bo
yz; = -(axy,x + °yy,y)i 8z;.

Here, the left-hand-side represents the change in stress from the

lower to the wupper surface of the ith

layer and 8z, is the
thickness of the ith layer at a particular 1location. The
derivatives with respect to x and y in the expressions above are
readily computed; this is because in-plane stresses within a layer
are related to element displacements through derivatives of

element shape functions, in conjunction with a material

definition.
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For an n layered laminate, n equations can be written in
terms of Dboth the unknown shear stresses at layer interfaces and
the shear stresses at the laminate surfaces. Assum{ng the
laminate has shear-free surfaces, the equations above give n
equations in n-1 unknowns, so that, the equation set is
over-determined. The equations have the matrix form below

(o ) (I )
1 Xz, Xz,

-1 \O / I y

xzn xzn

nx (n-1) (n-1) x 1 (n x 1}

where I - '(°xx,x + ‘xy,y)ibzi and o j represents the shear

stress acting at the interface of the j-lth and jth layer. A

xzi X2

similar equation set is obtained by replacing Oxzj with vzj and
with Iyzi' These equations are solved by utilizing a
least-squares orthonormalization procedure [13]. Due to the

simplicity of the terms in the coefficient matrix, a concise
ciosed-form solution is obtained. Having determined the
transverse shear stresses, the transverse normal stress variation
is determined through the numerical form cof the third equilibrium
equation of the ith layer

Ao

Az

zz;, = -(o + )

xz,x © %yz,y’i%i

As before, the left-hand-side represents the change in stress

15
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through the ith layer. Appropriate polynomial functions are
utilized to describe the o . and vz in-plane variati9n. These
functions are differentiated to obtain the right-hand-side of the
equations above. Again the equation set is overdetermined because
the normal tractions are known at the laminate surfaces. Solving
for %2 proceeds, therefore, in identically the saae manner as

discussed in calculating Oz and °yz‘ Parenthetically, inclusion

of body forces can be accomplished with little difficulty.

As a final note with regard to solving the equilibrium
ecuations, note that the stresses coming from the constitutive
equations are computed in an "element" coordinate system. 1In the
special case of a shell element, these coordinates are generally
not directed in either tangent-to or normal-to the shell
directions. An additional computational requirement in tnis case
is, therefore, to transform the "constitutive" stresses from
element to shell coordinates. This allows numerical integration
to proceed on a layer-by-layer basis in a direction normal to the
shell surface, and assures that the stresses are determined with

accuracy.

Successful application of the Higher Order Displacement type
elements for particularly thin geometries requires the use of
reduced numerical integration. This approximation technique
brings along the choice of implementing it overall or selectively
to the strain energy components. For the QHD plate formulations,
only the transverse shear components are integrated with reduced

16
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order [14-16]). Good results are obtained with the shell

| o

formulatione by under-integrating all strain energy terms.

_:';'..":.

A reduced basis numerical algorithm has been developed and

;i;tfﬁf?ff*‘

studied with respect to predicting the response of geometrically
nonlinear systems. Good results have been obtained for some
classical problenms. The computational efficiency of this

approach, however, 1is only realized when applied to a very large

Ll

ordered system of equations.

A preprocessor has been developed to generate the finite ::i
element mesh for an airfoil shape of multiple-circular-arc S
geometry. Nodal coordinates, element connectivity and unit ;f%
gsurface normals are all generated on the basis of limited i:i

geometrical input for a number of spanwise locations on a blade.
The normal vector definitions are needed in implementing the

QHD48S shell element. Typical mesh geometries are shown in

i;f Figures 1 and 2. The preprocessor can also generate finite

element meshes for the special case of a cylindrical shape, which
r' has proven very useful in some of the verification testing

.. presented in the next section.

i; IX1.1.4. Analytical Vverification

L
Co
.
_9q
4
L
N
N ‘c‘
_d

Significant verification results relating to the developed

plate and shell element performance have been presented in

o

previous technical reports submitted under Contract No.

17




rd9620-82-x-0032. Much of these efforts are also reported in the
pipers and presentations listed in Section V (Related Activities)
of this report. Static, dynamic (fundamental frequency and
transient) and buckling response predictions for various laminate
. AQQOI.ttiil are included in these results and will not be repeated
hcr;in. It is noteworthy that the QHD formulation gives the best
regsults overall and that the elements are suitable for the study

f of damage accumulation in laminated composite structures.
[ Results comparing the performance of the QHD48 plate and
QRD48S shell elements have not previously been presented. Each of

9 these elements has six degrees of freedom per node and is similar,

formulation is unigue, however, due to the layer-by-layer approach

E in this regaid, to other elements found in the literature. The

to obtaining the transverse stresses through wuse of the

equilibrium equations. This is the common thread linking all of

Ul vax

the elements developed in this work. For the QHD48 plate element,

oy R

L

3 x 3 Gaussian gquadrature along with 2x2 gquadrature for the

transverse shear components is employed. The element exhibits six

-

rigid body modes and does not yield anv undesirable spurious ;;;d
modes. In the shell formulation, 2x2 Gaussian quadrature is used :{Gg
to integrate all strain energy terms. This numerical approach . .
» produces six rigid body modes plus an additional zero-energy mode. L_i
This additional mode has not been shown to have a deleterious

effect upon element performance.

| QHD48 and QHD40 element formulations produce essentially
- 18
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identical results for cyiindrically bent and rectangular flat
plates. In addition, the QHD48 element has been used to model
both helically wound and cress-plied composite cylinders. First
considered is a 1long cylinder under an internal pressure of 50
P8I, with inner diameter 36 1in., thickness of 0.36 in. and
cylindexr 1length of 353 in. The laminate geometry is given as
(35.3%,-35.3%,35.3°-35.3°%,35.3°) . The orthotropic lamina
properties are defined as

E. = 5.136x10% 2s1

L

E, = 1.522x10% ps:

T
G,p = 0.439x10% psI

Vip = 0.281

L
and typical results are given in Figures 3 and 4. It |is
interesting to note that the deformation is not axisymmetric as
might be assuned. Results compare quite favorably with those

obtained vsing a 3-D solid finite element formulation (17]).

The ANHD48 plate and QHD48S shell elemen:t formulations have
been utilized to calculate the transverse shear siress variation
that occurs in the ‘'boundary layer’ regior. of a laminated
cylindrical shell. Some of the results are compared to those
given in (18), which presented an analytical solution specifically
for determining the interlaminar strosses in laminated cylindrical
shells. Plate/shell solutions are compared to those given in (18]
for a three-layer, cross-ply wound cylinder. Fiber orientation is

19
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defined as ([0°, 90°, 0°] and results are obtained for two ?“ii
different sets of Dboundary <conditions including Dboth H~ﬁ!
simply-supported and clampad ends. The cylinder geometry and L
loading is the same for all results presented herein. The

cylinder has a length L = 50 inches, radius R = 25 inches and wall

thickness t = 0.25 inches. Also, the cylinder is subjected to a

uniform internal pressure of 100 psi. Two material systems are

considerad as defined below

b

Boron-Epoxy:

| EL = 32.5 MPSI
Ei E, = .84 MPSI
o
“ GLT = 0.642 MPSI
! Vi p = 0.256
| Glass-Epoxy:
g
: EL = 6,00 MPSI
L ET = 1,50 MPSI
2 GLT = 0.80 MPSI
i? Vpr ® 0.25 MPSI
i? The assumed material properties and geometry definitions are all
L consistent with those given in [18].
3 Since the laminated geometry under consideration is
- synmetric, only one quadrant of the cylinder with suitably
I specified boundary conditions need be modelled. Two levels of

nmesh refinement have been used to assure that convergent sclutions
! 20 B
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obtained. These include both 10x10 and 16x16

have Dbeen
rectangular meshes. These meshes along with the geometry are
shown in Pigure 65, Note that all of the solutions prglcnted
herein are for the more refined meah. Calculated values for the

longitudinal transverse shear stress, occurring at the

Tya’
interfacea of the 0° and 90° layers are given in Figures 6-9. The
first ltvo of these Figures relate to the Boron-Epoxy material
systam, while the latter two Figures provide results for the
Glass-Epoxy system. Regardless of which boundary condition is
considered, the results indicate essentially zero transverse
stresses away from the end constraint. Whereas in the vicinity of
the cylinder end, a ‘'boundary layer’ develops in which the
transverse stresses become gquite significant. As demonstrated in
these Figures, the calculated transverse stresses are in excellent
agreement with the analytical solutions given by wWaltz [18). Note
that the shell element model gives better agreement with the
analytical solution than does the plate element model, as would be
expected. While the 10x10 mesh results are not presented herein

for these cases, the solutions compare well with the 16x16 results

and do demonstrate convergence.

Finally, calculated transverse stresses are presented for a
cylindrical shell with a quasi-isotropic layup having ply sequence
[0°, +45°, -45°, 90°]s. The material system is assumed to be the
Glass-Epoxy previously defined, while the geometry and loading are
unchanged. Figures 10 and 11 present the transverse stress 'Tyz'
variation calculated using the plate and shell element

21
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formulations, again for both clamped and simply-supported boundary
conditions. The ‘’'boundary layer’ stresses are similar to those
shown in the previous cases. Based on the previous exinp;es, it
is believed that the shell element provides the more accurate
results. All stress results represent average values at selacted
node points on the model. It is interesting to note that the
variation in these stresses, i.e., at a particular node shared by
more than one element, is much less pronounced in the shell than
in the plate formulation. It seems this is simply a further
indication that the shell formulation is more suitable in

modelling structures having curvature.

Some verification testing of a developed "reduced basis"
algorithm has also been performed for some classical problems.
These include the large displacement transient response of both
cantilevered and clamped-clamped beams subjected to step loading.
Results aze given in Figures 12 and 13 demcnstrating the accuracy
obtained in these problems compared to directly integrating all of
the dynamical equations. Note that the basis vectors are
comprised of both Ritz vectors and derivatives of Ritz vectors.
The efficiencies obtained in using these vectors to obtain
solutions for linear dynamical systems has been shown in [19, 20]).
Reducing the order of the equations can be effective when the
equations do not need to be updated very often during the course
of a transient response analysis. Furthermore, the utility in
such an approach is only realized in studying the response of
large-ordered systems of equations.

22

T A

o g

SRS

bk

b



IX.2. TASK 1I: Incorporate Damage MHNechanisma into Dynamic

Response Pormulation

Relevant failure modes of interest include those listed below
(1) £iber fracture
(ii) fiber-matrix debonding
(ii1) matrix cracking (parallel and transverse to fibers)

(iv) delamination

7, .7?73‘-»": -

(v) buckling (possibly at layer or sub-laminate level)

Several smooth failure criteria, e.g., [21-24) have been developed

Lt Bethe yU¥ 28
FUEINT

in recent years to represent the failure of composites. These

-3
RRTY I ST
i Pl
: R IR LA )

L TR

criteria, to varying degrees, can predict "failure" but do not o)

ey
LSS ]

identify a particular mode of failure. 1In performing incremental

R AAdg
oo

"damage" analysis, it is essential to both predict failure and to ::i

characterize it, e.g., do fibars rupture, does delamination occur,

-

T W oW - i
',.'.. . -

etc. The computational approach must, therefore, differentiate
between viable failure modes and appropriately alter the

constitutive equations on an incremental basis.

r Stress Based Approach

One approach is to implement a piecewise smooth failure

criteria, e.g., [25]) in the finite element formulation. The ;;j

SR SR

general failure criteria is then comprised of m separate

inequalities of the form

Pj ({o})<1 ; j=1,2,...,m

la

23
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at the layer level within each element. These criteria should

differentiate between (i) tensile and compressive fiber failure, -e!
| (ii) tensile and compressive matrix failure and (iii) delamination 13i§
| at layer interfaces due to either maximum stress or buckling fvf@
; considerations. Eizi
i As progressive damage occurs throughout incremental loading :1i;
k (whether it be static or dynamic), it is essential that violation . 1;
i of failure criteria inequalities be reflected in modification of if:i
! the material properties, This can be achieved by modifying the i 'f
| appropriate terms in the constitutive equations to reflect é
i "stiffness reduction". When the strain varies between tension and ;;:i

compression, as in the case of trancsient dynamic response, the

: numerical model must reflect the differences in moduli related to

' whether or not an array of cracks is predicted to be opened or

closed. 1
e :
, In conjunction with the above it is essential to perform “”i

equilibrium iterations within each analysis increment. This is

required to ¢ssure that stress redistribution is properly

accounted for as damage progresses. ';

—
| e
| The piecewise smooth failure criteria currently implemented ‘ ﬂ
‘. . A;”‘i

ir the incremental analysis are primarily due to Hashin [25), Lee o

[26]), Greszczuk [27) and Hahn [28]. Layer stresses are defined as - ﬂ

shown in Figure 14 and the criteria are summarized as follows: :

-
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Piber railure

1. Tension '
The simplest criterinn for tensile failure of a composite is
the maximum stress criteria. The failure occurs if the fiber

tensile stress exceeds the allowable normal strength IrN

i °, 2 Oy

However, this is a drastic approximation, since the fibers vary

significantly in their strength. Lee proposes that in addition to
checking this criterion, the fibers fail if

(62
LT

FS is the fiber shear strength. On the other hand, the

2 1/2
+ 07pg) 2 %pg
where o

criterion proposed by Hashin for the tensile fiber failure is

2 2
+ — [JLT-O-cLz]-l

2. Compression

For compressive loads applied along the fiber direction, a i

proposed failure mechanism is analogous to the buckling of a ﬁ

Y column. The critical fiber buckling stress in the shear mode is ;—%
given by Greszczuk and Hahn as ) E

or .

'_ “es T Tk .

where Gr is the resin modulus, and k is the volume fraction ratio.
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Natrix Pailure

1. Tension

The composite tensile strength transverse to tha2 fibers is
not expected to deviate significantly £from the matrix tensile

strength. The tensile criteria used are as follows

Lee Iy 2 MN or (°2TL + cz.rz)l/2 2 s
1 2 1 2 1 2 2
Hashin — (cT+az) + 5 (o‘,rz -cTuz)+———§ (aLT + o2 )=1
MmN us rs

where (cT + oz) >0
The matrix normal strength and the matrix shear strength are
and o

denoted as o respectively.

MN MS'

2. Compression

Under compression, failure may occur by shearing along a
surface through the matrix parallel to the fiber axis. The

criterion that describes this is proposed by Hashin.

1 2 1

“mnc - 1] (o, 4+0,)+ (o.+ )2+ : ( 2 )
" v+ %% ‘4"2_' Oqtoz! ¥—3— 19 727 %1%
NNC Ms ° ms 7 mMs
1
2 2
+— (0% g + 07pg) =1
s I
26
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where MNC is the compressive matrix strength.

Delamination

!
E
|

Lee proposes that delamination occurs if either

2 2,172
og20py Of (op," + opy") 2 g
where °ON and opg are the through-the-thickness tensile and shear

strengths respectively. Yet another form used by the authors to
identify delamination is as follows

+ < 2

2
9 ] ‘er T2
=1 + - — > 1
DN

ps

Sublaainate Buckling

High interlaminar stresses that cause delaminations in
composite components often cause localized buckling subsequent to
delamination. These high stresses may promote the growth of the
buckled delaminated region and lead to structural failure [29].
This instability related crack growth can be studied by the
virtual crack closure technique as proposed by Whitcomb ([30].
Simply, one identifies the delamination zone and addresses the
layers above the delamination line 2s & "sublaminate" region and
the layers below as a "parent" region. 1In this initial model,
pacrent is assumed to be rigid. Therefore, one models only the
sublaminate region as a plate with clamped boundaries. Figure 15
describes the g¢eometry of the model. The reactions that are
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calculated at the boundaries serve as forces that are used to
close the debonded region (crack). The total strain energy

release rate is calculated from the following expression,

+ "x‘x +M_ K _ + M__K ).

G = 0.5+ (Nxcx + Ne =+ vy xyFxy

vy * Mxy®xy

. Then, the distribution in the strain energy release rate is

calculated as a function of the debond gucmetry.

Damage Prediction Calculations (Stress Based Approach)

The damage histories for selected composite laminates
subjected to both in-plane and bending loads have been determined.
Note that both static and transient dynamic loading conditions

have been considered.

Uniaxial Tension: Response to Static Load

The one element plate model of Figure 16 is employed for the
uniaxial tension analysis of angle-ply laminates. The laminate
consists of three layers of T300/5208 graphite epoxy. Two
stacking sequences are studied; namely, ([6°/0°/-6°])s and
[e°/90°/-6°]s. The material and the strength properties of
T300/5208 are given in Table 1. The first and last ply failure
curves of the ¢two laminates as a function of Theta are shown in
Pigure¢s 17 and 18 for a statically applied load. As expected, the
first and the 1last ply failures for wuniaxial laminates of
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{6°/70%°/68°)s o©of VFrigure 17 occur simultaneously, except for angles
greater than 30°, they are quite separated, The [0°/90°/6°]s
layup of figure 18 shows that for 6=60°, 75°, and 90° laminates,
the initial and final failures coincide, whereas for angles less
than 60°, they are e&sily distinguished. Table 2 displays an
alternate view of the damage progression in a [15°, 90°. -15°]s
laminate, where initial failure occurred at the 60th 1load
increment and the final failure at the 117th increment. The
column headings of Table 2; TF, CF, TM, CM and DL denote Tensile
Fiber PFailure, Compressive Fiber Failure, Tensile Matrix Failure,
Compressive Matrix Failure, and Delamination, respectively. Note
that the first ply failure was matrix failure in the 90° plys
followed by the fiber failure in the angle plys. Thus one can
easily identify the failure mode within a ply for a given load

increment.
Uniaxial Tension: Critically Damped Kesponse to Step Load

The same uniaxial tension model described above is used by
the incremental dynamic analysis. To verify the dynamic response
routines, all modes in the transient response are critically
damped to approximate an incremental static solution. The first
and last ply failures are predicted for the same stacking
sequences as described in the incremental static analysis. The

results for the [9°/0°/9°]s stacking sequence are shown in Figure

19. The first and last ply failures occur simultaneously for
e=0°, 15° and 30°. These results compare quite well with the
29
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Tsai-Wu failure criteria and those obtained in the incremental

static analysis. Likewise, the predicted firet and last ply

failures for the stacking sequence [0'/90‘/-6‘]s compared
exceptionally well with the Tsai-Wu failure criteria and with data
obtained from the incremental static analysis (Figure 20). Table
3 displays the progression of damage within the (15‘/90’/-—15']s
laminate. The first ply failure occurred in the matrix of the 9C°

plies at the 50th load-time increment. The final failure occurred
in the fibers of the 15° plies at the 97th load-time increment. ;;ﬂ
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The damage progression predicted by the incremental dynamic

o

analysis 1is, therefore, quite similar to that obtained using ,;l

SR

the incremental static analysis.
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Uniaxial Bar: Transient Response to Rectangular Pulse

A [60°/0°/-60°]s T300/5208 graphite/epoxy bar is analyzed for

L the effects of damage on the transient response, The bar has a ;;i
f- length to height ratio of 16. Damping is not included in this

particular analysis. The composite bar is loaded with a

r rectangular pulse load equivalent to 45 percent of the last ply

static failure 1load for the laminate. The duration of the pulse

is 1.5 times the fundamental period of the bar. The

e YT T
L. .
s

(60°/0°/-60°]s composite bar is analyzed both with no residual ;;q

(I

. 4

compressive stiffness and with ninety percent residual stiffness

after a tensile failure mode has occurred. the transient response

b R

e

of the damaged laminate compared to the linear dynamic response is

N

presented in Figure 21. 1In the figure, the tip displacement is
30
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normalized by the maximum amplitude obtained by the linear dynamic
solution and time is normalized by the fundamental period of the
bar. At point A, matrix cracks de§elop in the 60° p;ies in
elements 1-7. at point B, the maximum tip displacement is greater
in the damaged laminate with no residual compressive stiffness
than in the damaged laminate with ninety percent residual

compressive stiffness.

Due to the development of tensile matrix damage, the
amplitude is increased in the first cycle. The time period for
*‘ile damaged transient response also tends to increase as damage
lowers the stiffness properties of the laminate. The damaged
laminate with no residual compressive stiffness exhibits a higher
compressive tip displacement than either the linear dynamic
solution or the damaged 1laminate with ninety percent residual
cor . essive stiffness. This is caused by the lower compressive

sti  1ess of the damaged laminate.

Tt .se results demonstrate that even for very simple
geometries, it is essential that the effective material moduli,
due to the opening/closing of crack arrays, be realistically

characterized in the numerical modelling process.
Four-Point Bending: Response to Static Load
The bending problem of Figure 22 is modelled with four

elements. The material and strength properties are as listed in
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Table 1. The laminate is wunidirectional and consists of
twenty-four layers. For the bending problem, as discussed by
Whitney [31), the critical aspect ratio is defined as s"max/Tnax,
and for the present geometry, it is 22. Delamination is observed
for aspect ratios 1less than the critical in the middle of the
laminate as the 1load is increased. Additional matrix and fiber
failure accompany delamination as shown in Table 4. The
interaction curve of Figure 23 reveals that the final failure
occurs after twenty percent load increase over the initial failure
load. It should be noted that for aspect ratios less than the
critical, the percent increase of the initial failure load to that
of final failure load is constant; thus if one reduces the shear
strength by the same percentage, the final failure load of the
corresponding aspect ratio ends up on the interaction curve. This
phenomenon is illustrated by the dash-lines of Figure 11. When
the aspect ratios are higher than the critical, i.e., thin plate,
the fiber failure at the outermost laminae proceeds rapidly toward
the center and within four percent increase of the initial load,
ultimate laminate failure occurs. A typical damage progression is
displayed in Table 4 for an aspect ratio of 100. It is also of
interest to observe the growth of failure as a function of the
total strain energy. Figure 24 presents the variation of total
strain energy in each lamina of a [0°]24 laminate with an aspect
ratio of sixteen. As can be observed, as the load is increased,
the strain energy increases in a layer until that layer undergoes
failure, in which case the strain energy is 1lower than its
previous value. This is depicted in layers 12 - 20, where failure
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is observed; however, the undamaged layers 1 - 11 and 21 - 24
still wmaintain higher strain energy values as load is increased.
Figure 25 focuses on the same information as PFigure 24, yet
provides a close-up of the energy variation in layers S through
20. As discussed above; as failure is detected, the strain energy
in a lgyct decreases and causes the discontinuity in the quadratic
curve. Note that the failure is observed as starting from the
middle layers. On the other hand, for an aspect ratio of 100, as
shown in rigure.26, the failure starts from the outermost laminae.

In this case, the damaged layers are 1 - 4 and 20 -~ 24.

Strain Energy Release Rate Calculations

A quarter of a square, debonded sublaminate region is
modelled a3 shown in Figure 27. A transverse point load is
applied at the center. The strain energy release rate is
calculated from

G = 0.5*D,,(M/P)**2
where D11 is the bending stiffness, M and P are the reaction

moment and applied transverse load, respectively.

Simple examples are chosen to evaluate the strain energy
release rate along the edge of the debond, for isotropic and
orthotropic layups, namely; [0']4, [90°]4, [45° -45'15. Figure 28
illustrates the distribhution cf G along the y-axis for the layups
considered. The magnitude of the total strain energy is the area
under the respective curves for each case. For all cases, it is
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observed that the delamination will grow at the midsides where G
is highest. " |

Strain Basod Approach

An alternative to modifying the constitutive equations based
on violation of stress failure criteria, is to use a strain based ﬂﬂ‘
approach that represents the accumulation of damage through :i
definition of internal state variables in conjunction with -

experimentally determined phenomenological constants. The lfl

internal state variables can be represented as vectors having
direction (orientation of damage)and magnitude (extent of damage).

This approach should give good accuracy in characterizing the type

¢f damage that develops first, i.e., intraply matrix cracking.
This approach, combined with the stress criteria for fiber failure
: and delamination, should pzovide more accurate predictions than
i; provided by use of the stress criteria alone. To be consistent
fl: with the finite element formulations developed in this work, it is
;f important that damage be characterized at the layer level. A
i’ laminate damage model, in combination with experimental results
?ﬁf for certain balanced laminates, can serve to define the needed

layer damage model. These models, along with results for moduli

- variation as a function of damage accumulation, have been
l present>d and discussed in the previous report under this project.
éf While these models have been formulated, they have not been
E; implemented in the computer formulation. It is emphasized that a _q

sigrificant amount of experimentation, probably using non-standard
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test specimens, would be needed to fully implement such an

approach to modelling damage accumulation.

11.3.3 TASK III: Correlation of Pormulated Respongse Nodel with
Experimental Data

Failure results presented in the previous section do compare

&

well with the experimental data given in ([32]). Additional ~;§
experimental results, while not plentiful, do exist for cases in -

which data has been generated to quantify the effects of damage

el

for various loading conditions. For example, the extent of damage

Y
Ai
Ky

<

is quantified in ([33,34] for the impact respontce of composite

AZLA. A R/

e AT 7R
et .'

pletes. Correlation of the present formulation with such

additional data would be a worthwhile endeavor.
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Table 1, Naterial Properties

Elastic Constants

Uniaxial Tension Pour-Point Bending

E; (GPa) 138 190 PN
B3 (6».) 10.6 11 "J
E3 (GPa) 10.6 1 L
Gy2 (GPa) 6.4 7.2 wd
G13 (GPa) 6.4 7.2 -4
G23 (GPa) 6.4 7.2
Vi, 0.3 .38

M3 0.3 .38

Vyq 0.3 .38

_ Strengths

Oy (MPa) 1500 (1500)* 1502 (1502)

J Ors (MPa) 68 67.5

M (MPa) 40 (246) 41 (250)

- %NS (MPa) 68 67.5

l %N (MPa) 40 41
%ps (MPa) 68 67.5

E _ ® Terms in parenthesis are the compressive strength. i;i
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Figure . The Stress Componentsin
Natural Coordinates
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Geometry of sublaminate model

Figure 15,
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Uniaxial tension model.

Figure 16.

N sl By A



{
.
:‘i
H
rd

-"
&

L

;h

0/0/ - ‘l
16/0/ - 8, LEGEND b
O First Ply Failure~QHD48 o
+ Last Ply Failure-QHD48 r'-}
o . -« First Ply Foilure=Tsal Wu ~A
’i 1290 - DN —-- Lost Ply Foilure=Tsai Wu B
2 RN
| : ~\ \‘
w 730+ * \'\
aa- i \‘\ .\.\~\-
7 * . \~‘.\'N.
$00 - R/ + T ——. —-t
g .
250 - TTreOeeiie 4
c T T T T L T r )
0 10 20 30 40 50 60 70 80 90
E” Ply Orientalion (degrees)
] Figure 17.  Calculation of first and last ply failure
o for a [0/ 0/ — §),]aminate-nonlinear static analysis
o 1200
[/%0/ - 6], LEGEND
r 1000 1 O First Ply Foilure-QHD48
L + Lost Ply Failure—QHD48
3 ‘ PH\,\ . - <« First Ply Failure~Tsai Wu
e ©  800- T —-- Lost Ply Failure-Tsai Wu
H a N
& 2z N
4 N
. > 600 - \
; . \ L
v 9 ®. N n
; 2 TTteel0 '
& 4004 . \,
;ll .. . \ e
- - . \o \\‘ ’A
200 o Sy e
~‘-..o-.\..\~‘~ ;
---- S
0 1 1 ! I 1§ ] 1 1 ] —!
: 0 10 20 30 40 50 60 70 80 90 o ’
" Ply Orientation (degrees) ‘
Figure 18. Calculation of first and last ply faiiure
L for a [6/90/~ 6),laminate-nonlincar static analysis

o

A -61~
i

: :

T RN . e Lo PN R .. G it e e

[ APRTSY 7 fud Lo ooz i ) - . P B I PRI PR R — e




p/o/-olo j

LEGEND T
18004 O First Ply Failure~QHD48 R
\.\ + Lost Ply Foilure—QHD48
250 : «.\ -~ Firast Ply Fallure=Tsal Wu
-~ 1 N ‘¢‘\ <= Last Ply Failure=Tsai Wu
b N
; ‘m-l °® !‘\\
* W
) . ‘\ \‘
% 7350 N S
@ A i T
-:'- ) s ~\‘§.
wn ‘\. 'Y §.~‘§-‘
300 -+ - + " T TS—— §
T o o a.
250 - R
¢ T T ! 1 7 T T 7
o 10 20 30 40 50 60 70 80 90

Ply Orientation (degrees)

Figure 19.  Calculation of first and last ply failure for a crit'ically
damped {¢/0/ — 6],]aminate-nonlinear dynamic analysis

5
)

1200
[8/90/ - 6], LEGEND G
’ 10004 O First Ply Failure-QHD48 = ‘
b ' | + Last Ply Failure-QHD48 R
£ T~ e - - - First Ply Failure=Tsai Wu P
T 800- ~. — == Last Ply Failure—~Tsai Wu T
B Q. \\ ' D
L2 \ g
. N\, —9
3 6?"*-_. \~
i 5 400 L. \, S
i el \, 4
) * - \\ .. . J
r 200 . N
‘ N
i “@-:“.'7.‘_ _______j L
L o 1 ] ] 1 Ll BB ] i | ' o
‘ 0 10 20 30 40 50 60 70 80 90 ' 5
: Ply Orienlation (degrees) |
” Figure 20. Calculation of first and last ply failure for a critically _
) damped [6/90/ — 6],laminate-nonlinear dynamic analysis e
! -62- '

AR D SRR Y B N O U SO S S SO SO




S L M S il |

g gy e T FREANAN SN o AL L AL oF Y ;s e ey T T
R R 005 gl VL IS NLAR SO Lo AL T LR AT TN e VIR GM PPN P GOV L PP S e g

[
MR
L
o.s- s e
3

o
o

“%1  Lecend

w——  Jdamage wt lncleded ’
= =  § peecen) seohleal compressive stilfnces
> 00 pevernt reeidual compernsive stiffness E‘I'I'J

T

. 0 1 2 3 4
ﬁ . Normalized Time

Normalized Tip Displocment

’

-1.0

\
d—
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Figure 22. Four-Point Bending Model -

63 _

e »

e s Ll e el ] et et e L el o b e e




AR

e0
90

O Initial Failure Stress :j

O Final Failure Stress

Figure 23. Interaction Curve for Four-—Point Bending Load.
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FIGURE 27. Model of Debonded Sublaminate Region
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FIGURE 28. G Distribution for Sublaminate Buckling
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Figure 25 Failure Progression of Four Point Bend Test
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